
1

Narrowband Interference Mitigation in SC-FDMA
Using Bayesian Sparse Recovery

Anum Ali, Mudassir Masood, Muhammad S. Sohail, Samir Al-Ghadhban and Tareq Y. Al-Naffouri

Abstract—This paper presents a novel narrowband interference
(NBI) mitigation scheme for SC-FDMA systems. The proposed
NBI cancellation scheme exploits the frequency domain sparsity
of the unknown signal and adopts a low complexity Bayesian
sparse recovery procedure. At the transmitter, a few randomly
chosen sub-carriers are kept data free to sense the NBI signal at
the receiver. Further, it is noted that in practice, the sparsity of the
NBI signal is destroyed by a grid mismatch between NBI sources
and the system under consideration. Towards this end, first an
accurate grid mismatch model is presented that is capable of
assuming independent offsets for multiple NBI sources. Secondly,
prior to NBI reconstruction, the sparsity of the unknown signal
is restored by employing a sparsifying transform. To improve
the spectral efficiency of the proposed scheme, a data-aided NBI
recovery procedure is outlined that relies on adaptively selecting a
subset of data carriers and uses them as additional measurements
to enhance the NBI estimation. Finally, the proposed scheme is
extended to single-input multi-output systems by performing a
collaborative NBI support search over all antennas. Numerical
results are presented that depict the suitability of the proposed
scheme for NBI mitigation.

Keywords—Narrowband interference mitigation, Bayesian sparse
signal estimation, SC-FDMA, multiple measurement vectors, data-
aided compressed sensing.

I. INTRODUCTION

ORTHOGONAL frequency division multiple access
(OFDMA) has been used extensively for uplink com-

munications due to its robustness against multipath fading and
simple equalization [1]. However, the transmission signal in
OFDMA is the sum of orthogonal sinusoids (with random
amplitudes and phases), causing high peak-to-average power
ratio (PAPR). The conflicting interest between linearity and
power efficiency of the power amplifier renders the high PAPR
an intolerable characteristic. A modified OFDMA system,
namely Fourier pre-coded OFDMA was proposed to solve
the high PAPR problem in OFDMA. The Fourier pre-coded
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OFDMA (more commonly known as single carrier - frequency
division multiple access (SC-FDMA)) retains the advantages of
OFDMA, while eliminating the problem of high PAPR. Due
to these characteristics, SC-FDMA has been adopted as the
uplink multiple access scheme in 3GPP long term evolution
(LTE) [2].

The wideband nature of SC-FDMA makes it highly sus-
ceptible to narrowband interference (NBI). The NBI sources
include other devices operating in the same spectrum (e.g.,
cordless phones, garage openers etc.) and other communication
systems operating in a cognitive manner. Here it is worth
mentioning that though OFDMA is equally susceptible to
these NBI sources, there is a fundamental difference in the
way NBI affects the data in SC-FDMA and OFDMA. While
a single NBI source (aligned with the grid of the system
under consideration) affects only one sub-carrier in OFDMA,
it perturbs all data points in SC-FDMA system. This makes
NBI mitigation in SC-FDMA vital for reliable performance of
the communication system. At high signal-to-interference ratio
(SIR), coding can be relied on to mitigate the errors introduced
by the NBI. However, at low SIR levels, interference begins
to overwhelm the code and necessitates a receiver that is able
to directly deal with it.

In this work, we exploit the sparse nature of the NBI to
recover it using a low complexity Bayesian sparse reconstruc-
tion procedure. Specifically, we utilize the support agnostic
Bayesian matching pursuit (SABMP) algorithm (proposed by
some of the authors in [3]) for NBI recovery. The SABMP al-
gorithm uses the statistics of additive noise (which is assumed
Gaussian), but is agnostic to the distribution of the active
elements. This characteristic plays a vital role in NBI-impaired
signal restoration as the distribution of the NBI signal might
not be known. Further, the practical scenario of grid mismatch
is also considered and the spreading effect is more realisti-
cally modelled by allowing the various NBI sources to have
independent grid offsets. It is noted that the spectral spillover
caused by the grid mismatch destroys the sparsity of the
unknown signal. A well-accepted methodology to spectrally
contain the spread NBI is windowing [4]. However, in this
work, we use the Haar transform to sparsify the NBI, which
is shown to outperform windowing in this aspect. Due to the
devastating effect of the NBI in low SIR regime, we presume
(throughout this work) that sparing a small subset of data
points for sensing the NBI is a reasonable choice. Moreover, to
minimize the number of reserved tones (and hence to maximize
the spectral efficiency) a data-aided NBI mitigation technique
is proposed. Using the proposed data-aided technique, the
receiver probabilistically assigns a confidence level to each
data point. A few data points (with highest confidence levels)
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are then selected and used in conjunction with reserved tones
to enhance the NBI estimation accuracy. Finally, we extend
the proposed reconstruction scheme to the multiple antenna
context. This extension is motivated by the observation that
NBI on each receive antenna will have the same support and
possibly different magnitudes and phases. Hence, the antennas
can collaboratively estimate the support of NBI signal to
improve the estimation accuracy.

The proposed scheme is distinguishable from existing lit-
erature as it aims at a general scenario of time-varying
(changing completely from symbol-to-symbol) multiple NBI
sources with independent grid offsets. Note that, several stud-
ies considered the impact of NBI in multi-carrier systems
and numerous strategies have been devised. Available NBI
mitigation schemes commonly adopt one of the following
three methodologies: avoidance [5]–[7], spreading [8], [9] and
subtraction [10]–[13]. However, these schemes are designed
for OFDMA and do not readily apply to SC-FDMA as the two
systems are fundamentally different. The literature addressing
the problem of NBI specifically for SC-FDMA is seriously
limited and only a handful of articles are available (e.g., [14],
[15]). Furthermore, these articles address specific cases (e.g.,
single NBI sources that don’t change much over multiple
symbols) under idealistic assumptions (e.g., known power and
location). In this relation, the proposed scheme completely
relaxes the requirement of known power (assumed in [13],
[14]) and known location (assumed in [14], [15]). Further,
owing to multiple interferers, we consider that any sub-carrier
within SC-FDMA band is susceptible to NBI, unlike [15] that
assumes consecutive impaired tones. We would also like to
highlight difference between the proposed scheme and [12],
[13] (i.e., existing works that exploit sparsity of NBI for its
estimation in zero padded - OFDM). Gomma and Al-Dhahir
[12], opted for `1-optimization based recovery of the unknown
signal, which is very complex for real time implementation.
To reduce the computational burden, Sohail et al. [13] utilized
the prior structural information and performed maximum a
posteriori estimation assuming Gaussian prior on the unknown
and availability of second order statistics. In contrast, we
propose a low complexity Bayesian recovery scheme that is
agnostic to the distribution of the unknown and does not
require the statistics of the signal.

The main contributions of this work can be summarized as
follows:

1) An NBI mitigation scheme is proposed that targets mul-
tiple time-variant NBI sources with independent grid
offsets.

2) A low complexity, sparsity aware, Bayesian NBI re-
construction methodology is proposed. The proposed
Bayesian method is agnostic to the distribution of the
NBI.

3) A realistic model for grid mismatch is used that allows
the NBI sources to have independent grid offsets.

4) Haar wavelet transformation is utilized to sparsify the
unknown spread NBI signal.

5) A data-aided approach for NBI recovery is presented to
improve the spectral efficiency of the proposed scheme.

6) The proposed scheme is extended to single-input multi-

output (SIMO) systems by exploiting the joint-sparsity of
NBI signals over all antenna elements.

A. Paper Organization
The remainder of the paper is organized as follows. Sec-

tion II introduces the data model for NBI impaired SC-
FDMA transmission. To mitigate the NBI, a Bayesian sparse
recovery procedure is presented in Section III. The data-aided
NBI recovery procedure is outlined in Section IV. Section V
extends the proposed NBI recovery scheme to SIMO systems
and finally Section VI concludes the paper. To avoid a bulky
simulation section at the end, each section is made self
contained in terms of numerical results. We set the stage by
introducing our notation.

B. Notation
Unless otherwise noted, scalars are represented by italic

letters (e.g. N ). Bold-face lower-case letters (e.g. x) are
reserved to denote time domain vectors, and frequency domain
vectors are represented using bold-face upper-case calligraphic
letters (e.g. X ). Bold-face upper-case letters are associated
with matrices (e.g X). The symbols x̂, xH, x(i) and x∗(i)
represent the estimate, hermitian (conjugate transpose), ith
entry and the conjugated ith entry of the vector x. The
cardinality of a set T will be denoted by |T |. Further, E[·], I
and 0 denote the expectation operator, identity matrix and the
zero vector, respectively.

II. SC-FDMA AND NBI MODEL

Consider an uplink SC-FDMA system with U users. In
such a system, the uth user converts the incoming high
rate bit stream into P parallel streams. These low rate bit
streams are then modulated using a Q-ary QAM alphabet
{A0,A1, · · · ,AQ−1}, resulting in a P dimensional data vector
xu. The data xu is Fourier pre-coded using the P ×P discrete
Fourier matrix FP to lower the PAPR of the transmission
signal. The (k, l)th element of FP is given by

fP (k, l)=P−1/2 exp

(
−2πkl

P

)
, k, l ∈ 0, 1, · · · , P − 1.

(1)

The pre-coded data FPxu is now mapped to the sub-carriers
designated for uth user. The sub-carrier/resource allocation
can be done in a localized or distributed manner (see [2]
for details). In this work, we only consider interleaved SC-
FDMA (i.e., SC-FDMA with interleaved resource allocation).
The motivation behind the use of interleaved allocation is the
robustness of this setting to frequency selective fading [2]. For
the uth user, the data FPxu is mapped to the designated sub-
carriers by using an N ×P (N = PU ) resource allocation
matrix Mu. For interleaved assignment, the (k, l)th element
of Mu is given by

mu(k, l) =

{
1, k = (u− 1) + Ul, 0 ≤ l ≤ P − 1,

0, otherwise.
(2)
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This makes resource allocation matrices belonging to different
users orthonormal, i.e.,

MH
i Mj =

{
IP , i = j,

0P , i 6= j.
(3)

Now, the N dimensional inverse DFT (IDFT) operation (i.e.,
FH
N ) on X u = MuFPxu results in the desired time domain

transmission signal. After adding the cyclic prefix, the time do-
main signal is fed to a finite impulse response channel of length
Nc, hu = [h∗u(0), h∗u(1), · · · , h∗u(Nc − 1)]H. The channel tap
coefficients form a zero mean, complex Gaussian, independent
and identically distributed (i.i.d) collection. We assume perfect
time and frequency synchronization between mobile terminals
and the base-station (BS). Hence, after removing the cyclic
prefixes, the received time domain signal (in absence of NBI)
can be written as

y =

U−1∑
u=0

HuF
H
NX u + z, (4)

where Hu is the circulant channel matrix for uth user and
z is the additive white Gaussian noise (AWGN) with z ∼
CN (0, σ2

zIN ). The circulant nature of Hu allows us to diag-
onalize it using DFT matrix FN and write Hu = FH

NΛuFN ,
where Λu is a diagonal matrix with channel frequency re-
sponse on its diagonal. In this work, the channel impulse
response is assumed known at the receiver and hence Hu and
Λu are readily available. The frequency domain received data
vector Y is now given by

Y = FNy =

U−1∑
u=0

ΛuX u + Z, (5)

where Λu = FNHuF
H
N and Z = FNz. Utilizing (3) and the

diagonal nature of Λu, the data vector xu can be estimated
by using the zero forcing - frequency domain equalization
(ZF-FDE). The ZF-FDE is implemented by projecting Y on
FH
PMH

uΛ−1u to get

x̂u,ZF = xu + FH
PMH

uΛ−1u Z. (6)

Though ZF-FDE is a reasonable choice for milder channels,
it is not suitable when the frequency response contains nulls.
This is because the noise corresponding to a spectral null (i.e.,
a weak channel) is greatly enhanced upon applying the ZF-
FDE. Further, as the enhanced noise (i.e., Λ−1u Z) impacts the
data xu through the IDFT operation FH

P , a single spectral null
can considerably increase the bit error rate (BER)1 [16]. To
address this issue, minimum mean square error - FDE (MMSE-
FDE), turbo equalizers and decision feedback equalizers are
explored as replacements for ZF-FDE [16]–[18]. In this work,
we use MMSE-FDE to obtain the following estimate

x̂u,MMSE = RxAH
(
ARxAH + σ2

zI
)−1

MH
uY , (7)

1In Section III-C, the proposed sparse reconstruction scheme is explored
from an alternative viewpoint of enhanced noise-cancellation in ZF-FDE
regime.

where Rx , E[xux
H
u ] = σ2

xI is the auto-correlation matrix of
the data vector and A , MH

uΛuMuFP . Both ZF and MMSE
estimators are linear in Y , hence we can simply write x̂u =
EuY (dropping the subscripts ZF and MMSE, which can be
understood from the context), where

Eu =

{
FH
PMH

uΛ−1u ZF
σ2
xA

H
(
σ2
xAAH + σ2

zI
)−1

MH
u MMSE

(8)

Using the definition of Eu, we can write x̂u = xu + EuZ ,
which is true, exactly for ZF-FDE and approximately for
MMSE-FDE as EuΛuMuFP ≈ I (the approximation tends
to equality as σ2

z → 0).
Though (7) provides a good estimate of xu in the NBI free

regime, it is not suitable for systems experiencing NBI. In
the following subsection, we explain how NBI affects the SC-
FDMA system.

A. The NBI Impaired SC-FDMA

The received SC-FDMA signal might be impaired by a
single or multiple time-variant NBI sources. Let IL be an L
dimensional vector representing the active NBI sources. Using
IL, we obtain an N dimensional NBI signal I = FN F̄H

NIL,
where F̄H

N is an N × L partial IDFT matrix containing
the columns corresponding to the frequencies of active NBI
sources. Here, it is important to understand that channels
between the NBI sources and the BS are absorbed into IL.
In other words, we can say that IL = ΛĪL

ĪL, where ΛĪL

is a diagonal L×L matrix containing the frequency domain
channel gains between the interference sources and the receiver
antennas and ĪL represents the actual interference sources2.
Hence, a simple addition of I in (5) will yield the NBI
impaired SC-FDMA received signal. This received signal is
given as

Y =

U−1∑
u=0

ΛuX u + I + Z. (9)

In practice, the NBI sources may have a grid offset with the
SC-FDMA system, causing energy of the NBI to spill over all
tones. A spreading matrix Hfo = FNΛfoF

H
N is commonly

used to model grid offset between the NBI signal and the sys-
tem under consideration [12], [13]. The diagonal matrix Λfo is
defined as Λfo , diag(1, exp( 2πα(1)N , · · · , exp( 2πα(N−1)N )),
where α is a random number uniformly distributed over the
interval [− 1

2 ,
1
2 ]. A fundamental limitation of this model is its

inability to assume independent grid offsets for multiple NBI
sources. To overcome this limitation, we define the spread NBI

2The sparsity of unknown NBI source can be preserved in effective NBI
if the frequency domain NBI channel matrix is diagonal. In this relation,
our work parallels prior works on sparse NBI mitigation that considered the
time domain channel between the NBI source and the receiver to be positive
semi-definite Hermitian Toeplitz and approximated it as circulant. This implies
diagonal nature of NBI channel response matrix (see [12], [13] and references
therein) and allows to estimate effective NBI that matches the sparsity of NBI
source.
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signal as

I = FN F̄H
conIL, (10)

where F̄con is the L×N continuous DFT matrix, with (fl, k)th
entry

F̄con,(fl,k) =N−1/2 exp

(
−2πflk

N

)
,
l ∈ 0, 1, · · · , L− 1,

k ∈ 0, 1, · · · , N − 1.
(11)

As the normalized frequencies fl/N ∈ [0, 1) are drawn inde-
pendently, they emulate independent grid offsets for different
NBI sources. Recently, Tang et al. used a similar modelling
approach in an attempt to estimate continuous frequencies and
amplitudes of a mixture of complex sinusoids [19].

The estimate of the transmitted signal xu in NBI free case
(i.e., (5)) is obtained using (7). However, following the same
estimation procedure for NBI impaired system (i.e., (9)) will
yield

x̂u = xu + Eu(I + Z), (12)

which is not a reliable estimate of xu due to the presence of
I . Further, note that I perturbs xu through an IDFT operation
(as evident by giving a closer look to the construction of Eu),
hence, even in the optimistic case (i.e., a single NBI source
with no grid offset) all data points are corrupted by the NBI.
In low SIR scenarios, the interference might be strong enough
to take a majority of data symbols out of their correct decision
regions, resulting in an intolerably high BER. Thus, our task
is the estimation/mitigation of I , which we pursue using a
Bayesian sparse recovery framework.

III. BAYESIAN SPARSE RECOVERY OF THE NBI
To reconstruct the unknown NBI signal, we keep a randomly

chosen subset of the vector X u data free and index this
subset using Tu. To extract the portion of the received signal
corresponding to the reserved tones, let us define a |Tu|×P
binary selection matrix STu . The selection matrix STu has one
entry equal to 1 per row, corresponding to the location of a
reserved data point (with all other entries being zero). Now we
proceed by projecting x̂u (defined in (12)) onto the subspace
spanned by the reserved points, i.e.,

STu x̂u︸ ︷︷ ︸
x′
u,T

= STuxu + STuEu︸ ︷︷ ︸
Ψu,T

(I + Z)︸ ︷︷ ︸
I ′

,

=⇒ x′u,T = Ψu,T I ′, (13)

where STuxu = 0. Owing to the presence of Eu in the
sensing matrix Ψu,T , the columns corresponding to subcarriers
assigned to user u are the only nonzero columns of Ψu,T . This
fact has two important implications:

1) Only the portion of NBI falling on subcarriers allocated
to user u is projected on the measurement vector x′u,T
and hence the subsystems (13) corresponding to different
users are uncoupled in terms of the information that they
contain regarding the NBI. Further, the dimensionality of
unknown can be reduced by eliminating zero columns of
the sensing matrix.

2) It does not serve any purpose to estimate NBI for all users
jointly as i) subsystems (13) belonging to each user are
uncoupled, hence the joint estimate is unlikely to be more
informative than individual estimate and ii) BS could be
interested in NBI recovery for only a few users.

At this stage, we drop the subscript u for notational con-
venience and simply write3 x′T = ΨT I ′. To recover I , the
above under-determined system of equations can be solved
using any compressed sensing (CS) reconstruction algorithm
(e.g., [20]–[24]). In this work, we follow a Bayesian sparse
recovery framework for the estimation of the unknown NBI
signal. However, a couple of fundamental challenges surface
when talking about Bayesian sparse NBI recovery. The first
challenge appears as common Bayesian approaches assume a
known prior on the active elements of the unknown signal (see
e.g., [21], [25]), and we may not know the distribution of the
NBI. The second challenge is the spreading of the NBI signal
(due to grid offset) that destroys the sparsity of the unknown
signal. These problems are addressed below.

A. Prior on I ′

It is a common practice in Bayesian schemes to assume
a known prior on the unknown signal, e.g., [25] assumes a
Laplacian prior. However, recently Masood and Al-Naffouri
proposed SABMP, a Bayesian scheme that is agnostic to the
distribution of active taps, but acknowledges the sparsity of
the unknown vector and Gaussianity of the additive noise
[3]. Further, the proposed scheme has been shown to out-
perform many algorithms, both for reconstruction accuracy
and computational complexity (see [3] for details). A brief
description of SABMP algorithm is given in Appendix A.
The agnostic nature of SABMP plays a vital role in NBI
recovery as i) we may not know the distribution of I and
ii) even if we did know the distribution, it might be difficult
to estimate its parameters (i.e., moments). Towards this end,
let us recall that IL represents the joint channel-NBI source
i.e., IL = ΛĪL

ĪL. Here, an appropriate treatment would be
to assume circularly symmetric complex Gaussian prior for
both ĪL and ΛĪL

. This implies that the entries of IL are
formed by the product of two independent complex normal
random variables. O’Donoughue and Moura coined the term
complex Double Gaussian for such a distribution [26]. Hence,
in this case, though the distribution is known, its parameter
estimation is relatively difficult. Further, if non-Gaussianity is
assumed on the NBI-BS channel model, it may yield more
complex statistical behaviour for IL. As we are interested
in recovering I , we note that for no grid offset, the active
elements of I will assume the distribution of IL. However,
grid offset will make the statistical characterization of I even
more challenging. For these reasons, a suitable reconstruction
scheme would be able to work regardless of the distribution of
unknown signal and whether this distribution is known or not.
As the SABMP algorithm possesses these qualities and incurs
low computational complexity, we employ SABMP as a sparse

3Here onwards, the subscript u is added (resp. removed) as per requirement
(resp. notational convenience).
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reconstruction scheme for NBI mitigation. In addition, the
extension of the SABMP algorithm for multiple measurement
vectors (MMV), namely MMV-SABMP [27], is tailor-made to
exploit the joint-sparsity of NBI signal in SIMO systems (see
Section V further ahead, which shows how to utilize multiple
antennas at the BS for enhanced NBI estimation).

B. Sparsifying I ′

A fundamental requirement of sub-Nyquist sampling based
reconstruction (as pursued in this work) is the sparsity of
the unknown signal. Though there are only a few active NBI
sources, in practice, the non-orthogonality of these sources to
the SC-FDMA grid destroys the frequency domain sparsity of
the unknown signal (see Fig. 1). In this subsection, we discuss
how the sparsity of the spread NBI signal can be restored.
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Fig. 1: NBI spreading for two active NBI sources as a result
of grid mismatch between the NBI sources and the SC-FDMA
system.

Two strategies are followed in literature to tackle the grid
offset problem. One possibility is to estimate the gird offset
(see e.g., [28], [29]). The problem with offset estimation is
that offset is a highly nonlinear function of the observa-
tions Y . Further, the grid offset estimation is complicated
by the fact that different NBI sources assume independent
grid offsets. The second approach is more mainstream and
directly deals with an NBI signal experiencing energy spill-
over (due to the grid mismatch) by windowing [12]. A win-
dowing matrix function Hwin = FNΛwFH

N applied to the
received signal sparsifies the unknown vector I ′. Here, Λw,
diag(w(0), w(1), · · · , w(N − 1)) and w(n) is the nth sample
of the window function. It is a common practice to window the
received time domain signal before taking the DFT. However,
since the sole purpose of introducing windowing is enhancing
the sparsity of I ′, we can postpone its inclusion till NBI
reconstruction. To incorporate the windowing matrix function
at NBI recovery stage we can re-write (13) as

x′T = ΨTH−1winHwinI ′, (14)

where we assume the non-singularity of Hwin. Now, if we
sense via ΨTH−1win, we will be reconstructing HwinI ′, which
is more sparse compared to I ′. As the formulation (14)
requires only the non-singularity of Hwin, we are motivated
to look for other possibilities towards sparsifying I ′. Our
drive to seek a better replacement for Hwin also stems from
the fact that Hwin is not a unitary matrix and hence lacks
a very desirable property pertaining to dictionary design in
standard CS [30]. Speaking in terms of time and frequency
domains, as the signal I ′ is no longer sparse in either, we
seek another domain that has a sparse representation of I ′.
Any transformation matrix that is; i) linear, ii) non-singular,
iii) unitary and iv) a good choice for sparsifying NBI, will
serve the purpose. While choosing a sparsifying transform for
NBI reconstruction, though properties i), ii) and iii) will be
promptly evident, property iv) needs some consideration. To
this end, note that unlike sparse signals, compressible signals
(such as the NBI under grid offset) cannot be compared
using `0 norm. As ‖I ′‖`0 = ‖HwinI ′‖`0 = N , counting
the number of active elements will yield a false conclusion
that windowing did not enhance the sparsity of the unknown.
As practical signals are seldom sparse, sparsity measures
other than ‖ · ‖`0 e.g., Gini index (GI) [31] and numerical
sparsity [32] have been put forth to compare compressible
signals. In this work, we use GI (a normalized measure of
sparsity) to compare sparsifying transforms. Consider a vector
I ′ = [I ′(0), I ′(1), · · · , I ′(N − 1)], with its elements re-
ordered, such that |I ′(0)| < |I ′(1)| <, · · · , < |I ′(N − 1)|.
The GI is then defined as

GI(I ′) = 1− 2

N−1∑
k=0

|I ′(k)|
‖I ′‖`1

(
N − k − 1

2

N

)
, (15)

where ‖·‖`1 represents the `1 norm. An important advantage
of GI over the conventional norm measures is that it is
normalized, and assumes values between 0 and 1 for any
vector. Further, it is 0 for the least sparse signal with all the
coefficients having an equal amount of energy and 1 for the
most sparse signal which has all the energy concentrated in just
one coefficient (see [31] for details). Our numerical findings
based on GI suggest that (among the tested transforms) Haar
wavelet transform [33] maximizes the GI and also satisfies the
other three required properties (i.e., it is linear, non-singular
and unitary). As the discussion on all the tested transforms
will take us too far afield, we will confine our attention to the
sparsifying ability of the Haar transform in comparison with
windowing. The unitary Haar transform Hhaar can be applied
to I ′ in a manner identical to (14), i.e.,

x′T = ΨTHH
haarHhaarI ′, (16)

where HH
haar = H−1haar. Note that, in (16) the sensing matrix

ΨTHH
haar does not contain zero columns, hence, unlike the

perfect grid alignment case, dimensionality of the unknown
cannot be reduced.
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C. Noise-cancellation in ZF-FDE Systems
So far the focus of our discussion has been the sparse

NBI recovery in SC-FDMA systems under MMSE-FDE setup.
However, in this subsection we take the liberty of a slight
diversion from the main route and explore the proposed sparse
recovery procedure as a noise-cancellation scheme in ZF-FDE.
The ZF-FDE regime suffers from noise enhancement owing to
the weak channels and unlike OFDMA (where a spectral null
destroys the data on only one sub-carrier), the enhanced noise
in SC-FDMA influences all data points. Hence, even a single
spectral null can considerably elevate the BER. The sparse
reconstruction procedure explained earlier can be put in use
to solve this noise enhancement problem. Let us recall from
(6) that with ZF-FDE, we have x̂u = xu + FH

PMH
uΛ−1u Z .

Following the steps that led to (13), we continue by projecting
(6) on ST and establish some notational simplifications to get

x′T = ΨTZ (17)

where ST xu = 0, x′T = ST x̂u and ΨT = ST FH
PMH

uΛ−1u .
Now, we intend to solve (17) for the unknown Z using
SABMP. However, by the very nature of sparse signal re-
construction, we are limited to reconstruct only a part of Z .
Luckily, in solving (17) using SABMP, the portion of Z that
is reconstructed falls exactly on the weak channels (i.e., on
the locations where the impact of noise is most pronounced).
The sparse noise reconstruction on weak channels is possible
as the sensing matrix ΨT contains the inverse channel Λ−1.
To comprehend this assertion, note that the presence of Λ−1

significantly enhances the ΨT columns corresponding to the
spectral nulls. As the measurement vector x′T is a linear
combination of the columns of ΨT , the stronger columns have
a significant contribution in x′T . In other words, the entries of
Z corresponding to the weak channels are seen much more
prominently in x′T , and hence have a high probability of recov-
ery. Recall that it is the noise at exactly these weak channels
that inflates the BER. Now, that this noise is recovered and
taken out, the noise enhancement problem is resolved to a
great extent.

D. Simulation Results
A 512 sub-carrier SC-FDMA system is simulated, with 2

active users accessing the frequency resources in interleaved
manner. The channel delay spread is quarter the symbol dura-
tion i.e., Nc = N/4 and 16-QAM modulation is utilized. The
NBI vector IL is obtained from complex normal distribution
with SIR=−10dB. Two experiments are conducted in order to
demonstrate the ability of the proposed reconstruction scheme
to successfully recover the NBI. In the first experiment no grid
offset is assumed, whereas, the second experiment assumes
the realistic grid mismatch case. The third experiment is
conducted to examine the noise-cancellation ability of the
proposed scheme for ZF-FDE setup. The performance of the
proposed scheme is compared with `1-optimization based NBI
recovery [12].

1) Experiment 1: Reconstruction with no Grid Offset: In
this experiment, we let the number of active NBI sources vary
from symbol to symbol with a maximum of four active NBI

sources per symbol. The locations of the active NBI sources
also vary, however, all NBI sources are restricted to fall on the
grid. Fig. 2 presents the BER results as a function of energy per
bit (Eb/N0) with 64 reserved tones per user (this corresponds
to a sub-sampling rate |T |N = 64

256 = 1
4 ).4 The results depict the

ability of the proposed scheme to effectively recover the NBI.
Further, observe that the (proposed) scheme is slightly inferior
to the (NBI free) case for lower Eb/N0 as the approximation
EuΛuMuFP ≈ I is weak. However, as Eb/N0 increases, the
approximation tends towards equality, and the performance of
the (proposed) scheme improves. Further, though the noise
enhancement issue is taken care of (to a great extent) by
using the MMSE-FDE, part of noise on relatively weaker
channels is still reconstructed and hence the (proposed) scheme
performs better than (NBI free) case for higher Eb/N0. Note
also that there is no visual difference between the reconstruc-
tion accuracy of the (proposed) scheme and (`1-optimization).
However, the subgraph depicting the average run-time of the
(proposed) scheme shows that (`1-optimization) incurs high
implementation complexity. These findings are inline with
the fact that the computational complexity incurred by the
(proposed) scheme is of the order O(|T |sN2) in comparison
with O(N3) for (`1-optimization), when an N dimensional
unknown with sN nonzero elements is reconstructed using |T |
measurements [3]. Fig. 3 presents the BER performance as a
function of reserved tones with Eb/N0 fixed at 17.5dB. These
results depict that acceptable BER performance might not be
achieved by choosing an arbitrarily small number of reserved
tones. Further, the (`1-optimization) yields better performance
(when |T |% is low) at the expense of higher computational
complexity.

At this stage, it is worth highlighting that the SABMP
requires the estimate of the probability of active elements ŝ,
whereas the `1-optimization does not. Hence, we conduct an
experiment to test the robustness of the SABMP algorithm to
errors in the estimate of the sparsity. The results shown in
Fig. 4 depict the BER performance of the proposed scheme
as a function of the initial estimate of the sparsity rate ŝ. The
estimate values are varied from 20% of the true value (i.e.,
0.2s) to 180% of the true value (i.e., 1.8s). It is observed, that
the (proposed) scheme is relatively insensitive to the errors in
the estimate of the sparsity rate, and the BER performance
varies only slightly over the range of interest.

2) Experiment 2: Sparsification using Haar Transform and
Reconstruction Accuracy: In this experiment, first we com-
pare the Haar transform and windowing (Hamming [12]) for
their sparsifying ability. The NBI sources are generated with
independent grid offset according to (10). The GI is calculated
(as a function of active NBI sources) and averaged over 1000
independent runs for I ′ and its two transformed counter-
parts (HwinI ′ and HhaarI ′). From the results (in Fig. 5),
we observe that for a small number of active NBI sources
(i.e., ≤ 4) the Haar transform has better sparsifying ability
than windowing. Further, the BER performance of proposed

4The sub-sampling rate 1/4 implies that 25% of the data-carriers are used as
measurement tones and hence this sub-sampling rate is referred to as |T |% =
25%.
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Fig. 2: BER performance of the proposed sparse NBI recon-
struction scheme as a function of Eb/N0 with |T |% = 25%
for perfect grid alignment
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Fig. 3: BER performance of the proposed sparse NBI recon-
struction scheme as a function of |T |% with Eb/N0 = 17.5dB
for perfect grid alignment.

SABMP reconstruction scheme for the cases of spread signal
(spread), windowing (window) and Haar transform (Haar) is
shown in Fig. 6 and is compared with (`1-optimization) (as a
function of Eb/N0). The `1-optimization based NBI recovery
is performed using windowing sparsity restoration [12]. A
maximum number of four active NBI sources with varying
locations and independent frequency offsets per symbol are
assumed with sub-sampling rate 1/4. The lower BER for

0.2s 0.6s 1s 1.4s 1.8s

10−3

10−2

10−1

ŝ
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Fig. 4: BER performance of the proposed sparse NBI recon-
struction scheme as a function of the initial estimate of the
sparsity rate ŝ for perfect grid alignment.
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Fig. 5: GI comparison (as a function of active NBI sources)
of Haar transform and windowing based sparsity restoration
averaged over 1000 independent runs.

(Haar) transform (in Fig. 6) supports the conclusion that Haar
transform possesses better sparsifying characteristics. The low
BER is expected as in sparse reconstruction, a scheme better
able to sparsify I ′ will yield better reconstruction accuracy
and hence a lower BER. Further, it is noticed that with grid
offset, windowed (`1-optimization) has an inferior performance
to the proposed NBI reconstruction scheme. This behavior is
expected, as the performance of `1-optimization deteriorates
with an increase in the sparsity rate. Fig. 7 shows the BER
performance as a function of reserved tones. It is evident
from the results that throughout the range of interest, Haar
transform yields lower error rate as compared with (spread)
and (window). Further, note that in addition to its superior
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BER performance, SABMP is able to run at a much lower
complexity as compared to (`1-optimization) (as demonstrated
in Fig. 3).

5 10 15 20 25

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

NBI Impaired
`1-optimization
Spread
Window
Haar
NBI free

Fig. 6: BER performance comparison of Haar transform and
windowing based proposed sparse NBI reconstruction as a
function of Eb/N0 with |T |% = 25% under grid offset.
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Fig. 7: BER performance comparison of Haar transform and
windowing based proposed sparse NBI reconstruction as a
function of |T | with Eb/N0 = 22.5dB under grid offset.

3) Experiment 3: Noise-cancellation in ZF-FDE: In this
experiment, the noise-cancellation ability of the proposed
sparse reconstruction scheme is examined under ZF-FDE.
The sub-sampling rate is kept fixed at 1/4 and the proposed
noise-cancellation scheme is compared with the MMSE-FDE.
Observe from the results of Fig. 8 that the proposed noise-
cancellation scheme provides an error rate that is comparable
to the MMSE-FDE.
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Fig. 8: Noise-cancellation performance of the proposed sparse
reconstruction scheme for ZF-FDE as a function of Eb/N0

with |T |% = 25%.

IV. RELIABLE CARRIERS FOR AUGMENTED NBI
RECOVERY

So far, we have completely relied on reserved tones to
estimate the NBI. Now, to improve the spectral efficiency, we
reduce the number of reserved tones and compensate for that
with a data-aided approach. Note that for low SIR, a majority
of data points in received NBI impaired signal are out of their
correct decision regions (as demonstrated by the high BER of
the (NBI impaired) curves in Fig. 2,3,4,6,7). However, after
subtracting the NBI estimate from (12), we have

x̂u = xu + Eu (I ′ − Î
′
)︸ ︷︷ ︸

˜I

= xu + du, (18)

where du = EuĨ
′
, and is henceforth called the residual NBI.

At this stage, it is reasonable to assume that the residual NBI
is not strong and a good number of data points lie in their
correct decision regions. These data points can be utilized to
further reduce the residual NBI. Since the NBI has only few
dominant elements, we only need a few data carriers to sense
it. Therefore, we look for subset of the most reliable carriers,
i.e., the carriers that have a high probability of falling in their
correct decision regions5. There are two fundamental questions
associated with the use of data-aided approach: i) how to find
a subset of reliable data carriers and ii) once this subset is
formed, how to use it in conjunction with the reserved tones
to improve the reconstruction accuracy. We start by addressing
the second question and later present a systematic procedure
to select a subset of data points that is reliable.

Let us assume that a set of |R| reliable carriers indexed by

5The severe impact of the NBI disallows the use of data-aided NBI recovery
from the outset (to completely eliminate the requirement for reserved tones).
Nonetheless, reliable carriers can be used in conjunction with reserved tones
to improve the system spectral efficiency.
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R is available, where R∩T = ∅. Now proceed by projecting
(12) onto a binary selection matrix SR and obtain

SRx̂u = SRxu + SREu(I + Z),

=⇒SRx̂u − SRxu︸ ︷︷ ︸
x′
R

= SREu︸ ︷︷ ︸
ΨR

(I + Z)︸ ︷︷ ︸
I ′

. (19)

where SR is a binary selection matrix, with one entry equal
to 1 per row corresponding to the location of a reliable data
point. This equation has the same form as (13) and can be
simply written as x′R = ΨRI ′. Note that, the unknown I ′ is
identical to (13) and the sensing matrix ΨR is similar to the
sensing matrix ΨT . Hence given the measurements x′R are
available, we can use the set of equation (19) in conjunction
with (13) to find a better estimate of I ′. Concatenating (13)
and (19), we get[

x′T
x′R

]
︸ ︷︷ ︸

x′

=

[
ΨT
ΨR

]
︸ ︷︷ ︸

Ψ

I ′,=⇒ x′ = ΨI ′. (20)

In comparison with (13) (which had |T | equations), (20) has
|T |+ |R| equations, and hence the solution of (20) is expected
to provide an improved NBI estimate. However, to solve (20),
we require the set of measurements x′R = SRx̂u − SRxu.
To obtain SRxu, we proceed by projecting (18) on SR, that
yields

SRx̂u = SRxu + SRdu. (21)

Under the assumption that the set R indexes the reliable
carriers, the equality SRbx̂uc = SRxu holds in (21), where
b·c represents a maximum-likelihood decision (i.e., it rounds
its argument to the nearest QAM constellation point). Further,
note that SRx̂u is accessible via (19), and hence, both com-
ponents required for the evaluation of x′R are available. Now,
(20) can be solved for I ′ using SABMP.

Now let us go back to the first question i.e., determining
the subset of reliable carriers R. To obtain this index set note
that, in (18), we expect the following: for some sub-carriers,
the residual NBI d(i) is strong enough to take x(i) out of its
correct decision region i.e., bx̂(i)c 6= x(i), while for others
with a milder residual NBI, we expect to have bx̂(i)c = x(i).
The subset of data carries which satisfy bx̂(i)c = x(i) are the
reliable carriers and fortunately constitute a major part of all
data sub-carriers (after initial NBI compensation). To select
this subset, we note that the major source of perturbation is
the residual NBI distortion, especially for high signal-to-noise
ratio. Hence, we can write the reliability function for the ith
sub-carrier in terms of d(i) as

R(i) =
p(d(i) = x̂(i)− bx̂(i)c)∑Q−1

q=0,A(q)6=bx̂(i)c p(d(i) = x̂(i)−A(q))
, (22)

where p(·) represents the pdf of d, which is assumed to be zero

mean Gaussian with variance σ2
d (see [34] for details)6. Note

that once the covariance of the residual NBI Ĩ ′ is available,
the covariance matrix of the distortion d (and hence σ2

d) can
be obtained. The procedure of obtaining the covariance of the
estimation error term Ĩ is outlined in Appendix B. In (22),
the numerator is the probability that d(i) does not take x(i)
beyond its correct decision region and the denominator sums
the probabilities of all possible incorrect decisions that d(i) can
cause. After obtaining the reliability R(i) for each carrier i,
we pick the |R| sub-carriers with highest reliability values and
index them using R. This index set is used in the previously
discussed manner to reconstruct the unknown clipping vector.
Further, it is observed that the set R constructed using the
reliability metric (22) indexes non-uniformly placed tones and
hence is fitting for CS based sparse recovery.

The concept of using reliable data carriers is not new, (see
e.g., [35], [36]). However, the reliability criteria employed
(by some of the autors in [35], [36]) is simplistic and relies
solely on the relative distance of the received constellation
point from its neighbours to determine the confidence level. In
order to explain the distance based approach, we consider as a
motivating example the constellation shown in Fig. 9. Here x̂1
and x̂2 are two equalized data samples which are equidistant
from the closest constellation point x. However, in spite of
being equidistant from x, x̂1 and x̂2 have different reliability
values. This is because the distances of these two points
from their respective next nearest neighbours are different.
Specifically, note that xa is next nearest neighbour of x̂1 and
xb is next nearest neighbour of x̂2 respectively. Given that x̂1
and x̂2 are equidistant from x, x̂2 is considered more reliable
than x̂1 since in relative terms, we have

|x̂2 − x|
|x̂2 − xb|

<
|x̂1 − x|
|x̂1 − xa|

(23)

This motivated the following reliability metric R(i),

R(i) = − log

(
|x̂− bx̂c|
|x̂− bx̂cNN |

)
(24)

where as defined before, bx̂c denotes rounding to the nearest
constellation point while bx̂cNN denotes rounding to the
next nearest constellation point. Thus, after calculating the
reliability of all N carriers, the reliabilities were sorted in
descending order R(i1) ≥ R(i2) ≥ · · · ≥ R(iN ) and |R|
carriers with the highest reliability were chosen.

In comparison to the distance based reliability metric, the
reliability function utilized in this work (given in (22)) makes
use of the additional information about residual NBI (i.e.,
σ2
d) and is rigorous towards analyzing the reliability of the

data points. Note also that the advantage of spectral efficiency
expected by the use of data-aided approach comes at the
expense of increased computational complexity. As the data-
aided reconstruction is a two stage process, its complexity is

6While evaluating R in (22), the the residual distortion d is assumed normal.
Assuming a known prior is necessary in this case in order to obtain a closed
form expression for R. Further, numerical results demonstrate satisfactory
performance of the utilized reliability metric under the assumption that d is
normal.
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Fig. 9: Geometrical representation of adopted reliability crite-
ria.

roughly twice the computational complexity of the one stage
(reserved tones only) reconstruction.

The selection of |T | and |R| is also critical for NBI
mitigation. From sparse signal reconstruction point of view,
it is desirable to increase the measurements, however, other
limitations render it infeasible to choose an arbitrarily large |T |
and |R|. The choice of |T | is mainly dictated by the desired
data rate and the number of NBI sources that the system
may experience. The selection of |R| is dependent on the
conflicting interests associated with increasing or decreasing
the number of utilized reliable tones. Note that, though a
larger |R| promises improved estimation accuracy but at the
same time the risk of feeding erroneous information to the
reconstruction algorithm is also increased.

A. Simulation Results

In this subsection, the effectiveness of the proposed data-
aided reconstruction scheme is numerically assessed. The gen-
eral simulation setup (i.e., sub-carriers, users, channel length,
SIR, QAM order etc.) is same as in the simulation subsection
III-D. However, changes whenever made are highlighted in the
description of experiments. In the first experiment, the BER
of the proposed data-aided reconstruction scheme is compared
with reserved tones only reconstruction. Whereas the second
experiment is carried to demonstrate the relationship between
|T | and |R|.

1) Experiment 1: Data-aided CS for Spectral Efficiency:
We start by choosing |T | = 32 and use |R| = |T | = 32
for data-aided NBI reconstruction. This way, though the sub-
sampling rate is still ( |T |+|R|N = 64

256 = 1
4 ), the reserved

tones rate ( |T |N = 32
256 = 1

8 ) is cut into half. We start
with the general grid offset case where a maximum of four
NBI sources per symbol are assumed. The recovery results
are generated by using Haar transform based sparsification.
From the results (shown in Fig. 10), it is evident that the
signal reconstruction accuracy considerably improves by using

reliable tones in conjunction with reserved tones (Augmented-
Recovered). Further, the proposed data-aided scheme is also
tested for the optimistic case of no grid offset and the results
are shown in Fig. 11. The findings for perfect alignment are
inline with the observations for the grid offset case and depict
the advantage of using reliable tones.
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Fig. 10: BER performance of the proposed data-aided sparse
recovery scheme as a function of Eb/N0 with |T |% = |R|% =
12.5% under grid offset and Haar transform based sparsity
restoration.
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Fig. 11: BER performance of the proposed data-aided sparse
recovery scheme as a function of Eb/N0 with |T |% = |R|% =
12.5% for the optimistic case of perfect grid alignment.

2) Experiment 2: Choosing |T | and |R|: This experiment is
carried to demonstrate a direct relationship between the num-
ber of reliable tones available and the reserved tones. Note that,



11

not all |R| carriers chosen using the proposed reliability criteria
are guaranteed to fall in their correct decision region. Hence,
we introduce a metric called normalized success rate defined
as |{i : bx̂(i)c = x(i), i ∈ R}|/|R|. This metric is used as
a measure that shows that among |R| carriers chosen, how
many carriers actually fall in their correct decision regions.
We compare and plot normalized success rate as a function
of Eb/N0, for several value of the ratio |R|%/|T |%. The
ratio |R|%/|T |%, depicts the percentage of reliable carriers
|R|% chosen, when the reserved tones were |T |%. In this
experiment, the maximum number of active NBI sources in
any symbol is limited to four, with varying locations and grid
offset per symbol. The results of this experiment are shown
in Fig. 12. The crosshatched region shows the success rate
for 25% reserved tones, whereas, the solid region shows the
success rate for 12.5% reserved tones. It is observed that the
number of correct decisions (measured as normalized success
rate) based on the utilized reliability criteria will significantly
increase, if we choose more reserved tones. The results are
obviously expected, as more reserved tones result in better
NBI reconstruction in the first stage and hence lower residual
NBI, yielding more reliable carriers.
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Fig. 12: Normalized success rate for the reliability criteria as a
function of reserved tones. The |R|%/|T |% format represents
the ratio of the percentage of reliable carriers picked |R|% to
the percentage of reserved tones |T |%.

V. MULTIPLE ANTENNA BASE-STATION

In this section, we consider a BS equipped with multiple
receiving antennas i.e., a SIMO setup. In this case, each
antenna element will be subjected to the same transmitted
signal impaired by the NBI sources. For a SIMO receiver,
although it will be too restrictive to assume the same NBI
signal across all antenna elements, it is practical to expect
the NBI signals to share a common support (i.e., to consider
the received NBI signals jointly-sparse). However, the values

of the active elements can vary across the antennas. Just as
the transmitted data will arrive at different antennas through
different channels, the antennas will experience the same NBI
possibly through different channels. In other words, the NBI
vectors that each antenna needs to mitigate share a common
support but possibly different values at the active elements.
For T antenna system, we will have T equations of the form
(20), one belonging to each antenna element. Thus we have

x′1 =Ψ1I ′1
x′2 =Ψ2I ′2

...
x′T =ΨTI ′T

where x′t, Ψt and I ′t represent the measurement vector,
sensing matrix and the unknown NBI signal belonging to the
antenna number t. This gives rise to the multiple measurement
vector (MMV) problem, where the antennas collaborate in
figuring out the common support (of I ′ts) and subsequently
each antenna individually estimates the NBI it sees at this
support. The SABMP algorithm that has been used so far
can be extended to the MMV setup (i.e., MMV-SABMP)
[27]. The cornerstone of MMV-SABMP scheme is to find the
support of the unknown signal collaboratively (based on all
measurement vectors) and later estimate the amplitudes of the
active elements individually for each unknown vector. Here
it is worth highlighting that the joint-sparse NBI estimation
can be casted as a block sparse problem and can be solved
using either SABMP or `1-optimization. However, the block
sparse signal estimation requires processing at a central lo-
cation, that has access to all the measurement vectors. In
certain applications, communicating the measurements to a
central location can impose excessive communication burden.
Whereas, the MMV-SABMP based joint-estimation can be
carried in a distributed manner, with minimum communication
overhead between antennas. Note that the computational load
of the MMV-SABMP algorithm is O(|T |sN2T 2). However, if
NBI reconstruction on all antennas is performed in parallel, the
computational burden becomes linear in T i.e., O(|T |sN2T ).

A. Simulation Results

In this subsection, the performance of MMV based NBI
reconstruction is compared with single measurement vector
(SMV) based reconstruction. The number of receiver antennas
is assumed to be 2 and received signals are combined using
maximal ratio combining (MRC). Other simulation parameters
are kept consistent with the previously explained setup.

1) SMV vs MMV Reconstruction for Jointly-Sparse NBI:
For simulation, the number of reserved tones is kept fixed at
|T | = 32 and hence, the sub-sampling rate is |T |N = 32

256 = 1
8 .

The maximum number of active NBI sources is four and
the practical case of grid offset is considered. The BER
performance of MMV and SMV reconstruction is compared
for varying Eb/N0 and results are presented in Fig. 13. It can
be observed that the MMV reconstruction improves the BER
over SMV reconstruction throughout the range of interest.
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Fig. 13: BER performance of the proposed MMV based
reconstruction of the jointly-sparse NBI signal as a function
of Eb/N0 for |T |% = 12.5% under grid offset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a framework for NBI
mitigation in SC-FDMA systems. The proposed approach
utilizes the sparsity (or compressibility) of the NBI signal
and makes use of a Bayesian algorithm (i.e., SABMP) for the
estimation and cancellation of NBI. The SABMP algorithm has
several advantages over other sparse reconstruction algorithms,
including i) low estimation error, ii) low complexity, iii)
ambivalence to the distribution of the sparse vector and iv)
availability of estimate error metric. In addition, to maximize
the spectral efficiency of the proposed scheme, a data-aided
approach was presented. In this regard, a systematic procedure
was outlined to select the most reliable carriers and their use in
conjunction with reserved tones. The proposed reconstruction
scheme was also extended to the practical case of multiple
receiver antennas where the distributed version of the SABMP
i.e, MMV-SABMP is used. This distributed version is essential
in reducing the complexity of the MMV-SABMP algorithm
and makes it suitable for NBI mitigation in multicell scenarios.

Studying the bandwidth efficiency of the proposed scheme
remains for future work. This is an important problem as it
can help determine the minimum number of measurements
required (i.e., |T |min) to reconstruct an NBI vector of length
N , given that it has sN active elements.

APPENDIX

A. A Brief Description of SABMP
Let us estimate the sparse vector I ∈ CN , from the the

observations vector x ∈ CM related by the linear regression
model, x = ΨI +z. Here, Ψ ∈ CM×N and z ∼ NC(0, σ2

zI).
The SABMP algorithm pursues an MMSE estimate of I given
x as follows,

ÎMMSE , E[I|x] =
∑
S
p(S|x)E[I|x,S]. (25)

Here the sum is executed over all possible 2N support sets
S of I . However, computing this sum is a challenging task
when (N) is large, because the number of possible support
sets can be extremely large and the computational complexity
will become unrealistic. To have a computationally feasible
solution, this sum can be approximated by considering only
those support sets which include the most significant taps with
high probability. These few support sets correspond to the sets
with significant posteriors p(S|x). Let Sd be the set of supports
for which the posteriors are significant. Hence, (25) can be
approximated to find the approximate estimate ÎAMMSE as
follows,

ÎAMMSE =
∑
S∈Sd

p(S|x)E[I|x,S]. (26)

We could determine Sd and ÎAMMSE in a greedy manner
using the dominant support selection metric defined as the log
posterior,

ν(S) , ln p(S|x) = ln p(x|S)p(S). (27)

The greedy algorithm of SABMP starts by first finding
the best support of size 1. This requires evaluating ν(S)
for S = {1}, . . . , {N}, i.e., a total of

(
N
1

)
search points.

Let S1 = {α1} be the optimal support. Now, the optimal
support of size 2 is found. Ideally, this involves a search over
a space of size

(
N
2

)
. To reduce the search space, however,

the greedy approach looks for the tap location α2 6= α1 such
that S2 = {α1, α2} maximizes ν(S2). This involves

(
N−1
1

)
search points (as opposed to the optimal search over

(
N
2

)
points). The process continues in this manner by forming
S3 = {α1, α2, α3} and so on. Therefore, Sd, the set of
dominant support sets is composed of support sets that are
incremental in nature as shown below,7

Sd = {S1,S2, . . . ,STmax
} ,

Sd = {{α1}, {α1, α2}, {α1, α2, α3}, . . . , {α1, α2, . . . , αTmax}} ,
(28)

The development of the SABMP algorithm in [3] assumes
that entries of I are activated with equal probability λ (i.e.,
i.i.d. Bernoulli with probability λ). However, if some elements
are more probable than others (based on the available informa-
tion), it is desirable to assign those entries a higher probability.
This requires us to assume a non-i.i.d. Bernoulli behavior for
the unknown sparse vector [37], and therefore the prior is given
as follows

p(S) =
∏
i∈S

λi
∏

j∈{1,...,N}\S

(1− λj), (29)

where, λi is the probability by which the ith element of I is

7In (28), Tmax refers to the maximum number of non-zero elements in the
sparse h. Tmax is selected to be slightly larger than the expected number of
active taps in the estimated sparse signal using the de Moivre-Laplace theorem.
For details about the algorithm, readers are directed to the reference [3].
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1: procedure GREEDY(A,y,λ, σ2
z , Tmax)

2: initialize J ← {1, 2, . . . , N}, i← 1
3: initialize empty sets Smax, Sd, p(Sd|x), E[I|x,Sd]
4: Ji ← J
5: while i ≤ Tmax do
6: Ω ← {Smax ∪ {α1},Smax ∪ {α2}, · · · ,Smax ∪
{α|Ji|} | αk ∈ Ji}

7: compute {ν(Sk) | Sk ∈ Ω}
8: find S? ∈ Ω such that ν(S?) ≥ maxj ν(Sj)
9: Sd ← {Sd,S?}

10: compute p(S?|x),E[I|x,S?]
11: p(Sd|x)← {p(Sd|x), p(S?|x)}
12: E[I|x,Sd]← {E[I|x,Sd],E[I|x,S?}
13: Smax ← S?
14: Ji+1 ← N \ S?
15: i← i+ 1
16: end while
17: return Sd, p(Sd|x),E[I|x,Sd]
18: end procedure

TABLE I: Support Agnostic Bayesian Matching Pursuit Algo-
rithm (SABMP)

active. Moreover, the likelihood is approximated as follows,

p(x|S) = exp

(
− 1

2σ2
z

∥∥P⊥S x
∥∥2
2

)
, (30)

where, P⊥S = I − PS = I − ΨS

(
ΨH
SΨS

)−1
ΨH
S is the

projection matrix and ΨS is formed by selecting the columns
of Ψ corresponding to the support S . Further, given that
M > |S| (a necessary condition for CS), the matrix ΨH

SΨS is
guaranteed to be well conditioned. Substituting (29) and (30)
in (27) yields

ν(S) , ln p(S|x) = (− 1

2σ2
z

)
∥∥P⊥S x

∥∥2
2

+
∑
i∈S

lnλi

+
∑

j∈{1,··· ,N}\S

ln(1− λj) (31)

Now the only term that is left to be evaluated in (26) is
E[I|x,S]. Note that it is difficult or even impossible to
evaluate this quantity because the distribution of the active
taps of I is unknown. Therefore, we replace it by the best
linear unbiased (BLUE) estimate as follows

E[I|x,S]←
(
ΨH
SΨS

)−1
ΨH
Sx. (32)

This provides us all the required quantities to evaluate
ÎAMMSE. Note that all parameters including σ2

z ,λ = {λi}Ni=1
and the possible size of support Tmax need not be known
and are estimated by the algorithm. The SABMP algorithm
is summarized in Table I.

B. Error Covariance and Estimation Error
Let,

Ĩ = ÎAMMSE − I (33)

be the error vector and RĨ , cov[Ĩ|x] where cov represents
the covariance. The trace of RĨ i.e., Tr[RĨ ] gives the MMSE
estimation error. In order to evaluate RĨ , let us define the
error vector ĨS = ÎS−I for a given support S, where ÎS =
E[I|x,S]. Let the corresponding error covariance matrix be
RĨ|S , cov[Ĩ|x,S]. Then RĨ could be expressed in terms
of RĨ|S by summing it over the dominant support set Sd as
follows

RĨ =
∑
S∈Sd

p(S|x) RĨ|S . (34)

Since we replace E[I|x,S] with a BLUE estimate, the
conditional error covariance matrix will be RĨ|S =

(ΨH
SC
−1ΨS)−1 [38] (where C = σ2

zI is the noise covariance
matrix). Combining this fact with (34) we have,

RĨ =σ2
z

∑
S∈Sd

p(S|x) (ΨH
SΨS)−1. (35)

Note that the calculation of covariance matrix involves a matrix
inversion term which is a computationally expensive task.
However, we would like to highlight that these inverses are
available as part of intermediate calculations in the SABMP
algorithm and hence do not pose any additional burden.
Although simple to compute, the error covariance matrix and
the estimation error play a vital role in the development of the
data-aided approach presented in Sec. IV. Further, it is worth
highlighting that such a calculation of the error covariance is
not possible for `1-optimization based sparse signal recovery.
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